Tìm tọa độ của chân đường vuông góc chung của B'D' và BC'

Câu hỏi :

Tìm tọa độ của chân đường vuông góc chung của B'D' và BC'.

* Đáp án

* Hướng dẫn giải

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Gọi IJ là đường vuông góc chung của B'D' và BC', n1 là vectơ pháp tuyến của mặt phẳng (P) qua B'D' và song song với AC', n2 là vectơ pháp tuyến của mặt phẳng (Q) qua BC' và song song với A'C.

Khi đó n1 = A'CB'D'= (1; 1; 2)

n2 = A'CBC' = (2; -1; 1)

Phương trình của (P) là: (x - 1) + y + 2(z - 1) = 0 hay x + y + 2z - 3 = 0.

Phương trình của (Q) là: 2(x - 1) - y + z = 0 hay 2x - y + z - 2 = 0.

Phương trình của (B'D') là: x = 1 - t, y = t, z = 1.

Phương trình của (BC') là: x = 1, y = t, z = t.

I là giao điểm của đường thẳng B'D' và (Q), để tìm tọa độ của I ta thế phương trình đường thẳng B'D' vào phương trình của (Q)

Ta có: 2(1 - t) - t + 1 - 2 = 0, hay t = 1/3. Từ đó suy ra I(2/3; 1/3; 1)

Tương tự, ta tìm được J(1; 2/3; 1/3).

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Giải SBT Toán 12 Đề toán tổng hợp ôn tập cuối năm !!

Số câu hỏi: 24

Copyright © 2021 HOCTAP247