A. \(I = \frac{9}{2}\)
B. \(I =- \frac{9}{2}\)
C. \(I = - \frac{7}{6}\)
D. \(I = \frac{7}{6}\)
A
Do \(\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f\left( x \right)=f\left( 0 \right)=-2\) nên hàm số \(f\left( x \right)\)
Đặt \(t=\cos x\Rightarrow \text{d}t=-\sin x\text{d}x\)
Đổi cận: \(x=0\Rightarrow t=1; x=\pi \Rightarrow t=-1\).
Ta có:
\(\int\limits_{0}^{\pi }{\sin 2x.f\left( \text{cos}x \right)\text{d}x}=\int\limits_{0}^{\pi }{2\sin x.\text{cos}x.f\left( \text{cos}x \right)\text{d}x=-\int\limits_{1}^{-1}{2t.f\left( t \right)\text{d}t}}=2\int\limits_{-1}^{1}{t.f\left( t \right)\text{d}t}\)
\(=2\int\limits_{-1}^{0}{x.f\left( x \right)\text{d}x}+2\int\limits_{0}^{1}{x.f\left( x \right)\text{d}x=2\int\limits_{0}^{1}{x\left( {{x}^{2}}+4x-2 \right)\text{d}x}+2\int\limits_{-1}^{0}{x.\left( 2x-2 \right)\text{d}x}}\)
\( = 2\left( {\frac{{{x^4}}}{4} + \frac{{4{x^3}}}{3} - {x^2}} \right)\left| \begin{array}{l} 1\\ 0 \end{array} \right. + 4.\left. {\left( {\frac{{{x^3}}}{3} - \frac{{{x^2}}}{2}} \right)} \right|_{ - 1}^0 = \frac{7}{6} + \frac{{10}}{3} = \frac{9}{2}\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247