A. \(\sqrt 3 {a^3}\)
B. \(\frac{{2{a^3}}}{3}\)
C. \(\frac{{\sqrt 3 {a^3}}}{3}\)
D. \(\frac{{2\sqrt 6 {a^3}}}{3}\)
D
Vì \(SA\bot (ABCD)\) nên \(SA\bot BC\), do \(BC\bot AB\) nên \(BC\bot (SAB)\).
Ta có SB là hình chiếu vuông góc của SC lên mặt phẳng (SAB), do đó góc giữa đường thẳng SC và mặt phẳng (SAB) là góc \(\widehat{CSB}={{30}^{{}^\circ }}\).
Trong tam giác SBC, ta có \(SB=BC.\cot {{30}^{{}^\circ }}=a\sqrt{3}.\sqrt{3}=3a\).
Trong tam giác SAB, ta có \(SA=\sqrt{S{{B}^{2}}-A{{B}^{2}}}=2a\sqrt{2}\).
Vậy \({{V}_{S.ABCD}}=\frac{1}{3}SA.AB.BC=\frac{1}{3}2a\sqrt{2}.a.a\sqrt{3}=\frac{2{{a}^{3}}\sqrt{6}}{3}\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247