Trong không gian Oxyz cho hai điểm \(A\left( 1;0;0 \right),B\left( 3;4;-4 \right)\). Xét khối trụ \(\left( T \right)\) có trục là đường thẳng AB và có hai đường tròn đáy nằm trên m...

Câu hỏi :

Trong không gian Oxyz cho hai điểm \(A\left( 1;0;0 \right),B\left( 3;4;-4 \right)\). Xét khối trụ \(\left( T \right)\) có trục là đường thẳng AB và có hai đường tròn đáy nằm trên mặt cầu đường kính AB. Khi \(\left( T \right)\) có thể tích lớn nhất, hai đáy của \(\left( T \right)\) nằm trên hai mặt phẳng song song lần lượt có phương trình là \(x+by+cz+{{d}_{1}}=0\) và \(x+by+cz+{{d}_{2}}=0\). Khi đó giá trị của biểu thức \(b+c+{{d}_{1}}+{{d}_{2}}\) thuộc khoảng nào sau đây?

A. (0;21)

B. (-11;0)

C. (-29;-18)

D. (-20;-11)

* Đáp án

C

* Hướng dẫn giải

Mặt cầu đường kính AB có tâm \(I\left( 2;2;-2 \right)\) và bán kính bằng 3.

Gọi \(x,\left( 0<x<3 \right)\) là bán kính đáy của \(\left( T \right)\), khi đó \(\left( T \right)\) có chiều cao bằng \(h=2\sqrt{9-{{x}^{2}}}\), do đó thể tích của \(\left( T \right)\) bằng

\(V=2\pi {{x}^{2}}\sqrt{9-{{x}^{2}}}=4\pi .\sqrt{\frac{{{x}^{2}}}{2}.\frac{{{x}^{2}}}{2}.\left( 9-{{x}^{2}} \right)}\le 4\pi \sqrt{{{\left( \frac{\frac{{{x}^{2}}}{2}+\frac{{{x}^{2}}}{2}+\left( 9-{{x}^{2}} \right)}{3} \right)}^{3}}}=12\pi \sqrt{3}\).

\(\left( T \right)$\) có thể tích lớn nhất bằng \({{V}_{\max }}=12\pi \sqrt{3}\) khi \(x=\sqrt{6}\).

Khi đó gọi \(\left( P \right)\) là mặt phẳng chứa đường tròn đáy của \(\left( T \right), \left( P \right)\) có phương trình tổng quát dạng x+2y-2z+d=0. Khoảng cách từ tâm \(I\left( 2;2;-2 \right)\) đến \(\left( P \right)\) bằng \(\sqrt{3}\) nên

\(\frac{{\left| {2 + 2.2 - 2.\left( { - 2} \right) + d} \right|}}{3} = \sqrt 3 \Leftrightarrow \left[ \begin{array}{l} d = 3\sqrt 3 - 10\\ d = - 3\sqrt 3 - 10 \end{array} \right.\)

Vậy \(b + c + {d_1} + {d_2} = 2 - 2 + 3\sqrt 3 - 10 - 3\sqrt 3 - 10 = - 20\)

Copyright © 2021 HOCTAP247