Giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y=f\left( x \right)=2{{x}^{3}}-6{{x}^{2}}+1\) trên đoạn \(\left[ -1;\,1 \right]\) lần lượt là

Câu hỏi :

Giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y=f\left( x \right)=2{{x}^{3}}-6{{x}^{2}}+1\) trên đoạn \(\left[ -1;\,1 \right]\) lần lượt là

A. 2 và -7

B. 1 và -7

C. -1 và -7

D. 1 và -6

* Đáp án

B

* Hướng dẫn giải

\(y' = f'\left( x \right) = 6{x^2} - 12x = 0\) \( \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = 2 \end{array} \right.\)

Mà \(f\left( -1 \right)=-7, f\left( 1 \right)=-3, f\left( 0 \right)=1\).

Do đó \(\underset{\left[ -1;\,1 \right]}{\mathop{\max }}\,f\left( x \right)=\max \left\{ f\left( -1 \right);\,f\left( 1 \right);\,f\left( 0 \right) \right\}=1\) khi x=0.

\(\underset{\left[ -1;\,1 \right]}{\mathop{\min }}\,f\left( x \right)=\min \left\{ f\left( -1 \right);\,f\left( 1 \right);\,f\left( 0 \right) \right\}=-7\) khi x=-1

Copyright © 2021 HOCTAP247