Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 2a có SA vuông góc với mặt phẳng \(\left( ABCD \right)\) và SA=2a. Khi đó góc giữa SB và \(\left( SAC \right)\) bằng:

Câu hỏi :

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 2a có SA vuông góc với mặt phẳng \(\left( ABCD \right)\) và SA=2a. Khi đó góc giữa SB và \(\left( SAC \right)\) bằng:

A. 60o

B. 30o

C. 90o

D. 45o

* Đáp án

B

* Hướng dẫn giải

Gọi \(I=AC\cap BD\).

Ta có \(BI\bot AC\) (tính chất đường chéo trong hình vuông ABCD).

Mặt khác, \(BI\bot SA\) (vì \(SA\bot \left( ABCD \right)\) mà \(BI\subset \left( ABCD \right)\)).

Suy ra \(BI\bot \left( SAC \right)\). Khi đó góc giữa SB và \(\left( SAC \right)\) là góc giữa SB và SI hay góc \(\widehat{BSI}\).

Ta có hình vuông ABCD có cạnh 2a nên \(AC=BD=2a\sqrt{2}\). Suy ra \(BI=AI=a\sqrt{2}\).

Xét tam giác SAI vuông tại A ta có \(SI=\sqrt{S{{A}^{2}}+A{{I}^{2}}}=\sqrt{4{{a}^{2}}+2{{a}^{2}}}=a\sqrt{6}\).

Trong tam giác SIB vuông tại I ta có \(BI=a\sqrt{2};SI=a\sqrt{6}\) khi đó \(\tan \widehat{BSI}=\frac{BI}{SI}=\frac{a\sqrt{2}}{a\sqrt{6}}=\frac{\sqrt{3}}{3}\Rightarrow \widehat{BSI}=30{}^\circ\)

Vậy góc giữa SB và \(\left( SAC \right)\) bằng \({{30}^{0}}\).

Copyright © 2021 HOCTAP247