Trong không gian với hệ tọa độ Oxyz, Phương trình của mặt cầu có đường kính AB với \(A\left( 2;1;0 \right)\), \(B\left( 0;1;2 \right)\) là

Câu hỏi :

Trong không gian với hệ tọa độ Oxyz, Phương trình của mặt cầu có đường kính AB với \(A\left( 2;1;0 \right)\), \(B\left( 0;1;2 \right)\) là

A. \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 4\)

B. \({\left( {x + 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z + 1} \right)^2} = 2\)

C. \({\left( {x + 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z + 1} \right)^2} = 4\)

D. \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 2\)

* Đáp án

D

* Hướng dẫn giải

Tâm mặt cầu chính là trung điểm I của AB, với \(I\left( 1;1;1 \right)\)

Bán kính mặt cầu: \(R=\frac{AB}{2} =\frac{1}{2}\sqrt{{{\left( -2 \right)}^{2}}+{{2}^{2}}} =\sqrt{2}\)

Suy ra phương trình mặt cầu: \({{\left( x-1 \right)}^{2}}+{{\left( y-1 \right)}^{2}}+{{\left( z-1 \right)}^{2}}=2\)

Copyright © 2021 HOCTAP247