Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, cạnh SB vuông góc với đáy và mặt phẳng \(\left( SAD \right)\) tạo với đáy một góc \({{60}^{{}^\circ }}\). Tính thể tích khối...

Câu hỏi :

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, cạnh SB vuông góc với đáy và mặt phẳng \(\left( SAD \right)\) tạo với đáy một góc \({{60}^{{}^\circ }}\). Tính thể tích khối chóp S.ABCD.

A. \(V = \frac{{3{a^3}\sqrt 3 }}{4}\)

B. \(V = \frac{{3{a^3}\sqrt 3 }}{8}\)

C. \(V = \frac{{8{a^3}\sqrt 3 }}{3}\)

D. \(V = \frac{{4{a^3}\sqrt 3 }}{3}\)

* Đáp án

C

* Hướng dẫn giải

Ta có \(\left. \begin{array}{l} SB \bot \left( {ABCD} \right)\\ AD \subset \left( {ABCD} \right) \end{array} \right\} \Rightarrow SB \bot AD\) mà \(AD \bot AB \Rightarrow AD \bot SA\)

\(\left. \begin{array}{l} \left( {SAD} \right) \cap \left( {ABCD} \right) = AD\\ AB \bot AD,AB \subset \left( {ABCD} \right)\\ SA \bot AD,SA \subset \left( {SAD} \right) \end{array} \right\} \Rightarrow \) \(\left( {\left( {SAD} \right);\left( {ABCD} \right)} \right) = \left( {SA;AB} \right) = \widehat {SAB} = {60^\circ }\)

Ta có \(SB = BD.\tan {60^\circ } = 2a\sqrt 3 \)

Vậy \(V = \frac{1}{3}SB.{S_{ABCD}} = \frac{1}{3}2a\sqrt 3 .4{a^2} = \frac{{8{a^3}\sqrt 3 }}{3}\)

Copyright © 2021 HOCTAP247