A. 373
B. 180
C. 275
D. 343
A
Gọi \({{l}_{1}},{{l}_{2}},...,{{l}_{250}}\) là chiều dài phần trải ra vòng thứ nhất, thứ hai,…, thứ 250 của khối trụ.
Vì khi trải ra 250 vòng, bán kính khối trụ giảm đi 2,5 cm nên bề dày tấm đề can là \(\frac{2,5}{250}=0,01cm.\)
Khi đó \({{l}_{1}},{{l}_{2}},...,{{l}_{250}}\) lần lượt là chu vi các đường tròn có các bán kính \({{r}_{1}},{{r}_{2}},...,{{r}_{250,}}\) với \({{r}_{1}},{{r}_{2}},...,{{r}_{250}}\) lập thành một cấp số cộng có công sai d=-0,01 và số hạng đầu bằng 25.
Nên \({{r}_{1}}+{{r}_{2}}+...+{{r}_{250}}=25.250+\frac{250.249}{2}.\left( -0,01 \right)=5938,75.\)
Vậy chiều dài phần trải ra là \({{l}_{1}}+{{l}_{2}}+...+{{l}_{250}}=2\pi .5938,75\approx 37314cm\approx 373m.\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247