Cho hình lập phương \(ABCD.{A}'{B}'{C}'{D}'\). Tính góc giữa đường thẳng \(A{B}'\) và mặt phẳng \(\left( BD{D}'{B}' \right)\)

Câu hỏi :

Cho hình lập phương \(ABCD.{A}'{B}'{C}'{D}'\). Tính góc giữa đường thẳng \(A{B}'\) và mặt phẳng \(\left( BD{D}'{B}' \right)\)

A. 60o

B. 90o

C. 45o

D. 30o

* Đáp án

D

* Hướng dẫn giải

Gọi O là tâm của hình vuông ABCD khi đó ta có \(AO\bot BD\) (1).

Mặt khác ta lại có \(ABCD.{A}'{B}'{C}'{D}'\) là hình lập phương nên \(B{B}'\bot \left( ABCD \right) \Rightarrow B{B}'\bot AO\) (2).

Từ (1) và (2) ta có \(AO\bot \left( BD{D}'{B}' \right)\Rightarrow \left( A{B}',\left( ABCD \right) \right)=\left( A{B}',{B}'O \right)=\widehat{A{B}'O}\)

Xét tam giác vuông \(A{B}'O\) có \(\sin A{B}'O=\frac{AO}{A{B}'}=\frac{1}{2}\Rightarrow \widehat{A{B}'O}=30{}^\circ \)

Vậy \(\left( A{B}',\left( ABCD \right) \right)=30{}^\circ \).

Copyright © 2021 HOCTAP247