A. 60o
B. 90o
C. 45o
D. 30o
D
Gọi O là tâm của hình vuông ABCD khi đó ta có \(AO\bot BD\) (1).
Mặt khác ta lại có \(ABCD.{A}'{B}'{C}'{D}'\) là hình lập phương nên \(B{B}'\bot \left( ABCD \right) \Rightarrow B{B}'\bot AO\) (2).
Từ (1) và (2) ta có \(AO\bot \left( BD{D}'{B}' \right)\Rightarrow \left( A{B}',\left( ABCD \right) \right)=\left( A{B}',{B}'O \right)=\widehat{A{B}'O}\)
Xét tam giác vuông \(A{B}'O\) có \(\sin A{B}'O=\frac{AO}{A{B}'}=\frac{1}{2}\Rightarrow \widehat{A{B}'O}=30{}^\circ \)
Vậy \(\left( A{B}',\left( ABCD \right) \right)=30{}^\circ \).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247