A. 15
B. \(\frac{{25}}{3}\)
C. \(\frac{{19}}{3}\)
D. 12
D
\({g}'\left( x \right)=\left( 4-2x \right){f}'\left( 4x-{{x}^{2}} \right)+{{x}^{2}}-6x+8=\left( 2-x \right)\left[ 2{f}'\left( 4x-{{x}^{2}} \right)+4-x \right]\).
Với \(x\in \left[ 1\,;\,3 \right]\) thì 4-x>0; \(3\le 4x-{{x}^{2}}\le 4\) nên \({f}'\left( 4x-{{x}^{2}} \right)>0\).
Suy ra \(2{f}'\left( 4x-{{x}^{2}} \right)+4-x>0, \forall x\in \left[ 1\,;\,3 \right]\).
Bảng biến thiên
Suy ra \(\underset{\left[ 1\,;\,3 \right]}{\mathop{\max }}\,g\left( x \right)=g\left( 2 \right)=f\left( 4 \right)+7=12\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247