A. \(\frac{1}{3}\)
B. \(\frac{4}{3}\)
C. \(\frac{2}{3}\)
D. \(\frac{-1}{2}\)
A
Mặt cầu (S) có tâm I(1;-1;1), bán kính \(R=\sqrt{6}\)
Gọi x là khoảng cách từ I đến mặt phẳng \((\alpha ), 0<x<\sqrt{6}\). Khi đó, thể tích khối nón đỉnh I, đáy là đường tròn (C) là: \(V=\frac{1}{3}x\left( 6-{{x}^{2}} \right)=-\frac{{{x}^{3}}}{3}+2x\)
Xét hàm số \(f(x)=-\frac{{{x}^{3}}}{3}+2x,\,\,\) với \(0<x<\sqrt{6}\)
\(f'(x)=-{{x}^{2}}+2;\,\,f'(x)=0\,\Leftrightarrow \,x=\pm \sqrt{2}\)
Hàm số y=f(x) liên tục trên \(\left[ 0;\sqrt{6} \right]\), có \(f(0)=f(\sqrt{6})=0,\,\,f(\sqrt{2})=\sqrt{2}\),
nên \(\underset{{}}{\mathop{\underset{\left( 0;\sqrt{6} \right)}{\mathop{Max}}\,\,f(x)}}\,=\sqrt{2}\), đạt được khi \(x=\sqrt{2}\).
Gọi \(\overrightarrow{u}=(1;-4;1)\) là một véc tơ chỉ phương của đường thẳng d. Vì \(IH\bot (\alpha )\) nên tồn tại số thực k sao cho \(\overrightarrow{IH}=k\overrightarrow{u}\), suy ra \(\left| \overrightarrow{IH} \right|=|k|.\left| \overrightarrow{u} \right|\,\,\Rightarrow \,|k|\,=\,\frac{\sqrt{2}}{\sqrt{18}}=\frac{1}{3}\,\Rightarrow k\,=\,\pm \frac{1}{3}\).
Với \(k=\frac{1}{3}:\overrightarrow{IH}=\frac{1}{3}\overrightarrow{u}\,\Rightarrow \,H\left( \frac{4}{3};-\frac{7}{3};\frac{4}{3} \right)\Rightarrow (\alpha ):x-4y+z-6=0\) (nhận vì \(O\notin (\alpha )\) )
Với \(k=-\frac{1}{3}:\overrightarrow{IH}=-\frac{1}{3}\overrightarrow{u}\,\Rightarrow \,H\left( \frac{2}{3};\frac{1}{3};\frac{2}{3} \right)\Rightarrow (\alpha ):x-4y+z=0\) ( loại vì \(O\in (\alpha )\) ).
Vậy \({{x}_{H}}+{{y}_{H}}+{{z}_{H}}=\frac{1}{3}\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247