Cho hình chóp tam giác đều S.ABC có độ dài cạnh đáy bằng 3 và độ dài cạnh bên bằng \(2\sqrt{3}\) (tham khảo hình bên). Khoảng cách từ S đến mặt phẳng \(\left( ABC \right)\) bằng

Câu hỏi :

Cho hình chóp tam giác đều S.ABC có độ dài cạnh đáy bằng 3 và độ dài cạnh bên bằng \(2\sqrt{3}\) (tham khảo hình bên). Khoảng cách từ S đến mặt phẳng \(\left( ABC \right)\) bằng

A. \(\sqrt {10} \)

B. 3

C. \(\sqrt {15} \)

D. \(\sqrt {6} \)

* Đáp án

B

* Hướng dẫn giải

- Gọi O là tâm của tam giác đều ABC

Vì S.ABC là hình chóp tam giác đều \(\Rightarrow O\) là hình chiếu vuông góc của S trên \(\left( ABC \right)\Rightarrow d\left( S,\left( ABC \right) \right)=SO\)

- Xét tam giác đều ABC có cạnh bằng 3 ta có: \(AD=\frac{3\sqrt{3}}{2}\Rightarrow AO=\frac{2}{3}AD=\frac{2}{3}.\frac{3\sqrt{3}}{2}=\sqrt{3}\)

Xét tam giác SOA vuông tại O có: \(S{{O}^{2}}=S{{A}^{2}}-A{{O}^{2}}={{\left( 2\sqrt{3} \right)}^{2}}-{{\left( \sqrt{3} \right)}^{2}}=9\Rightarrow SO=3\)

Copyright © 2021 HOCTAP247