Trong không gian Oxyz, mặt cầu tâm có tâm là \(I\left( 2;2;2 \right)\) và đi qua điểm \(M\left( 6;5;2 \right)\) có phương trình là:

Câu hỏi :

Trong không gian Oxyz, mặt cầu tâm có tâm là \(I\left( 2;2;2 \right)\) và đi qua điểm \(M\left( 6;5;2 \right)\) có phương trình là:

A. \({\left( {x - 2} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 2} \right)^2} = 25\)

B. \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 25\)

C. \({\left( {x - 6} \right)^2} + {\left( {y - 5} \right)^2} + {\left( {z - 2} \right)^2} = 25\)

D. \({\left( {x - 6} \right)^2} + {\left( {y - 5} \right)^2} + {\left( {z - 2} \right)^2} = 5\)

* Đáp án

A

* Hướng dẫn giải

- Vì M thuộc mặt cầu tâm I nên bán kính mặt cầu là

\(R=IM=\sqrt{{{\left( 6-2 \right)}^{2}}+{{\left( 5-2 \right)}^{2}}+{{\left( 2-2 \right)}^{2}}}=5\)

- Mặt cầu có tâm I, bán kính R=5 có phương trình là: \({{\left( x-2 \right)}^{2}}+{{\left( y-2 \right)}^{2}}+{{\left( z-2 \right)}^{2}}=25\)

Copyright © 2021 HOCTAP247