Trang chủ Đề thi & kiểm tra Lớp 12 Toán học Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Nguyễn Trãi lần 2 Trong không gian Oxyz, cho ba đường thẳng \(d:\frac{x}{1}=\frac{y}{1}=\frac{z+1}{-2},{{\Delta }_{1}}:\frac{x-3}{2}=\frac{y}{1}=\frac{z-1}{1},{{\Delta...

Trong không gian Oxyz, cho ba đường thẳng \(d:\frac{x}{1}=\frac{y}{1}=\frac{z+1}{-2},{{\Delta }_{1}}:\frac{x-3}{2}=\frac{y}{1}=\frac{z-1}{1},{{\Delta }_{2}}:\frac{x-1}{1}=\frac{y-2...

Câu hỏi :

Trong không gian Oxyz, cho ba đường thẳng \(d:\frac{x}{1}=\frac{y}{1}=\frac{z+1}{-2},{{\Delta }_{1}}:\frac{x-3}{2}=\frac{y}{1}=\frac{z-1}{1},{{\Delta }_{2}}:\frac{x-1}{1}=\frac{y-2}{2}=\frac{z}{1}\). Đường thẳng \(\Delta \) vuông góc với d đồng thời cắt \({{\Delta }_{1}},{{\Delta }_{2}}\) tương ứng tại H,K sao cho \(HK=\sqrt{27}\). Phương trình của đường thẳng \(\Delta \) là

A. \(\frac{{x - 1}}{1} = \frac{{y + 1}}{1} = \frac{z}{1}\)

B. \(\frac{{x - 1}}{1} = \frac{{y - 1}}{{ - 1}} = \frac{z}{1}\)

C. \(\frac{{x + 1}}{2} = \frac{{y + 1}}{1} = \frac{z}{1}\)

D. \(\frac{{x - 1}}{{ - 3}} = \frac{{y + 1}}{{ - 3}} = \frac{z}{1}\)

* Đáp án

A

* Hướng dẫn giải

\(H\in {{\Delta }_{1}}\Leftrightarrow H\left( 3+2t;t;1+t \right), K\in {{\Delta }_{2}}\Leftrightarrow K\left( 1+m;2+2m;m \right)\).

Ta có \(\overrightarrow{HK}=\left( m-2t-2;2m-t+2;m-t-1 \right)\). Đường thẳng d có một VTCP là \(\overrightarrow{{{u}_{d}}}=\left( 1;1;-2 \right)\).

\(\Delta \bot d\Leftrightarrow \overrightarrow{{{u}_{d}}}.\overrightarrow{HK}=0\Leftrightarrow m-t+2=0\Leftrightarrow m=t-2\Rightarrow \overrightarrow{HK}=\left( -t-4;t-2;-3 \right).\)

Ta có \(H{{K}^{2}}={{\left( -t-4 \right)}^{2}}+{{\left( t-2 \right)}^{2}}+{{\left( -3 \right)}^{2}}=2{{\left( t+1 \right)}^{2}}+27\ge 27,\forall t\in \mathbb{R}\)

\(HK=\sqrt{27}\Leftrightarrow t=-1,\,\,m=-3.\) Khi đó \(\overrightarrow{HK}=\left( -3;-3;-3 \right)=-3(1;1;1), H(1;-1;0)\).

Phương trình đường thẳng \(\Delta \) là \(\frac{x-1}{1}=\frac{y+1}{1}=\frac{z}{1}\)

Copyright © 2021 HOCTAP247