Trong không gian với hệ tọa độ Oxyz, cho điểm \(A\left( 1;2;-3 \right),B\left( \frac{3}{2};\frac{3}{2};-\frac{1}{2} \right),C\left( 1;1;4 \right),D\left( 5;3;0 \right).\) Gọi \(\le...

Câu hỏi :

Trong không gian với hệ tọa độ Oxyz, cho điểm \(A\left( 1;2;-3 \right),B\left( \frac{3}{2};\frac{3}{2};-\frac{1}{2} \right),C\left( 1;1;4 \right),D\left( 5;3;0 \right).\) Gọi \(\left( {{S}_{1}} \right)\) là mặt cầu tâm A bán kính bằng \(3,\left( {{S}_{2}} \right)\) là mặt cầu tâm B bán kính bằng \(\frac{3}{2}.\) Có bao nhiêu mặt phẳng tiếp xúc với 2 mặt cầu \(\left( {{S}_{1}} \right),\left( {{S}_{2}} \right)\) đồng thời song song với đường thẳng đi qua C và D.

A. 1

B. 2

C. 4

D. Vô số

* Đáp án

A

* Hướng dẫn giải

Ta tính được \(AB=\frac{3\sqrt{3}}{2},\) lại có \({{R}_{1}}+{{R}_{2}}=3+\frac{3}{2}=\frac{9}{2}\) nên giao tuyến hai mặt cầu là một đường tròn.

Gọi \(I=AB\cap \left( \alpha  \right)\) với \(\left( \alpha  \right)\) là mặt phẳng thỏa mãn bài toán. Hạ BK,AH vuông góc với mặt phẳng \(\left( \alpha  \right).\) Khi đó ta có I nằm ngoài AB và B là trung điểm AI vì \({{R}_{2}}=\frac{3}{2}=\frac{1}{2}{{R}_{1}}\xrightarrow{{}}BK=\frac{1}{2}AH.\)

Suy ra \(I\left( 2;1;2 \right).\) Gọi phương trình mặt phẳng \(\left( \alpha  \right):a\left( x-2 \right)+b\left( y-1 \right)+c\left( z-2 \right)=0,\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}>0 \right).\)

Vì \(\left( \alpha  \right)\,\text{//}CD\) mà \(\overrightarrow{CD}=\left( 4;2;-4 \right)\) nên ta có \(2a+b-2c=0\Leftrightarrow b=2c-2a.\)

Khi đó 

\(d\left( {A,\left( \alpha \right)} \right) = 3 \Leftrightarrow \frac{{\left| { - a + b - 5c} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }} = 3 \Leftrightarrow {\left( {c + a} \right)^2} = {a^2} + {\left( {2c - 2a} \right)^2} + {c^2} \Leftrightarrow \left[ \begin{array}{l} a = 2c \to b = - 2c\\ a = \frac{1}{2}c \to b = c \end{array} \right..\)

Khi đó ta có

Trường hợp 1. \(b=-2c;\,a=2c\Rightarrow \left( \alpha  \right):2c\left( x-2 \right)-2c\left( y-1 \right)+c\left( z-2 \right)=0\Leftrightarrow 2x-2y+z-4=0.\)

Vì \(C\in \left( \alpha  \right)\xrightarrow{{}}\) mặt phẳng 2x-2y+z-4=0 không thỏa.

Trường hợp 2. \(b=c;a=\frac{1}{2}c\Rightarrow \left( \alpha  \right):\frac{1}{2}c\left( x-2 \right)+c\left( y-1 \right)+c\left( z-2 \right)=0\Leftrightarrow x+2y+2z-8=0.\)

Ta thấy \(C,D\notin \left( \alpha  \right)\xrightarrow{{}}x+2y+2z-8=0\) thỏa.

Vậy x+2y+2z-8=0.

Copyright © 2021 HOCTAP247