Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng \(\left( P \right):x+\left( m+1 \right)y-2z+m=0\) và \(\left( Q \right):2x-y+3=0\), với m là tham số thực. Để \(\left( P \rig...

Câu hỏi :

Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng \(\left( P \right):x+\left( m+1 \right)y-2z+m=0\) và \(\left( Q \right):2x-y+3=0\), với m là tham số thực. Để \(\left( P \right)\) và \(\left( Q \right)\) vuông góc thì giá trị của m bằng bao nhiêu?

A. \(m=-5\).

B. \(m=1\).

C. \(m=3\).

D. \(m=-1\).

* Đáp án

B

* Hướng dẫn giải

Vectơ pháp tuyến của mặt phẳng \(\left( P \right)\): \(\overrightarrow{n}\left( 1;m\text{+1;}-2 \right)\)

Vectơ pháp tuyến của mặt phẳng \(\left( Q \right)\): \(\overrightarrow{m}\left( 2;-\text{1;}0 \right)\)

Theo yêu cầu bài toán: \(\overrightarrow{n}.\overrightarrow{m}=0\Leftrightarrow 2-\left( m+1 \right)=0\Leftrightarrow 2-m-1=0\Leftrightarrow m=1\)

Copyright © 2021 HOCTAP247