A. 1
B. 2
C. 3
D. 4
B
TXĐ: \(D=\mathbb{R}\backslash \left\{ -1 \right\}.\)
* \(\underset{x\to -{{1}^{+}}}{\mathop{\lim }}\,=\underset{x\to -{{1}^{+}}}{\mathop{\lim }}\,\frac{2x-1}{x+1}=-\infty \Rightarrow x=-1\) là tiệm cận đứng của đồ thị hàm số.
* \(\underset{x\to {{\infty }^{+}}}{\mathop{\lim }}\,=\underset{x\to {{\infty }^{+}}}{\mathop{\lim }}\,\frac{2x-1}{x+1}=\underset{x\to {{\infty }^{+}}}{\mathop{\lim }}\,\frac{2-\frac{1}{x}}{1+\frac{1}{x}}=2\Rightarrow y=2\) là tiệm cận ngang của đồ thị hàm số
Vậy đồ thị hàm số \(y=\frac{2x-1}{x+1}\) có hai đường tiệm cận.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247