Gieo một con súc sắc cân đối và đồng chất hai lần. Tính xác suất để ít nhất một lần xuất hiện mặt sáu chấm.

Câu hỏi :

Gieo một con súc sắc cân đối và đồng chất hai lần. Tính xác suất để ít nhất một lần xuất hiện mặt sáu chấm.

A. \(\frac{12}{36}.\)

B. \(\frac{11}{36}.\)

C. \(\frac{6}{36}.\)

D. \(\frac{8}{36}.\)

* Đáp án

B

* Hướng dẫn giải

Gọi \({{A}_{1}}\) là biến cố lần thứ \(i\) xuất hiện mặt sáu chấm, với \(i\in \left\{ 1;2 \right\}.\)

Ta có: \(P\left( {{A}_{i}} \right)=\frac{1}{6}.\)

Gọi B là biến cố ít nhất 1 lần xuất hiện mặt sáu chấm.

Khi đó: \(B={{A}_{1}}.\overline{{{A}_{2}}}\cup \overline{{{A}_{1}}}.{{A}_{2}}\cup {{A}_{1}}.{{A}_{2}}.\)

Vậy: \(P\left( B \right)=P\left( {{A}_{1}} \right).P\left( \overline{{{A}_{1}}} \right).P\left( {{A}_{2}} \right)+P\left( {{A}_{1}} \right).P\left( {{A}_{2}} \right)=\frac{1}{6}\left( 1-\frac{1}{6} \right)+\left( 1-\frac{1}{6} \right)\frac{1}{6}+\frac{1}{6}.\frac{1}{6}=\frac{11}{36}.\)

Copyright © 2021 HOCTAP247