Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và có thể tích bằng 48. Gọi M, N lần lượt là các điểm thuộc cạnh AB, CD sao cho \(MA=MB,NC=2ND.\) Thể tích khối chóp S.MBCN bằng

Câu hỏi :

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và có thể tích bằng 48. Gọi M, N lần lượt là các điểm thuộc cạnh AB, CD sao cho \(MA=MB,NC=2ND.\) Thể tích khối chóp S.MBCN bằng

A. 8

B. 20

C. 28

D. 40

* Đáp án

C

* Hướng dẫn giải

Gọi \(d\) là chiều cao của hình bình hành \(ABCD.\)

Ta có: \({{S}_{ABCD}}={{S}_{ADN}}+{{S}_{ANM}}+{{S}_{MBCN}}\Leftrightarrow AB.d=\frac{1}{2}.DN.d+\frac{1}{2}.AM.d+{{S}_{MBCN}}\)

\(\Leftrightarrow {{S}_{MBCN}}=AB.d-\frac{1}{2}.\frac{1}{3}.AB.d-\frac{1}{2}.\frac{1}{2}.AB.d\Leftrightarrow {{S}_{MBCN}}=\frac{7}{12}{{S}_{ABCD}}.\)

Vậy thể tích khối chóp \(S.MBCN\) là

\({{V}_{S.MBCN}}=\frac{1}{3}.{{S}_{MBCN}}.h=\frac{1}{3}.\frac{7}{12}.{{S}_{ABCD}}.h=\frac{7}{12}.\left( \frac{1}{3}.{{S}_{ABCD}}.h \right)=\frac{7}{12}.48=28\) (đvtt).

Copyright © 2021 HOCTAP247