Cho tứ diện ABCD có \(AB,AC,AD\) đôi một vuông góc và \(AB=6a,AC=9a,AD=3a.\) Gọi \(M,N,P\) lần lượt là trọng tâm của các tam giác \(ABC,ACD,ADB.\) Thể tích của khối tứ diện \(AMNP\...

Câu hỏi :

Cho tứ diện ABCD có \(AB,AC,AD\) đôi một vuông góc và \(AB=6a,AC=9a,AD=3a.\) Gọi \(M,N,P\) lần lượt là trọng tâm của các tam giác \(ABC,ACD,ADB.\) Thể tích của khối tứ diện \(AMNP\) bằng

A. \(2{{a}^{3}}.\)

B. \(4{{a}^{3}}.\)

C. \(6{{a}^{3}}.\)

D. \(8{{a}^{3}}.\)

* Đáp án

A

* Hướng dẫn giải

Gọi \(I,F,E\) lần lượt là trung điểm của các cạnh \(BC,CD,BD\)

\(\frac{{{V}_{A.MPN}}}{{{V}_{A.IEF}}}=\frac{AM}{AI}.\frac{AP}{AE}.\frac{AN}{AF}=\frac{2}{3}.\frac{2}{3}.\frac{2}{3}=\frac{8}{27}\Rightarrow {{V}_{A.MPN}}=\frac{8}{27}{{V}_{A.IEF}}\left( 1 \right)\)

\(\Delta BIE=\Delta CIF=\Delta EFD\left( c.c.c \right)\Rightarrow {{S}_{IEF}}=\frac{1}{4}{{S}_{BCD}}\Rightarrow {{V}_{A.IEF}}=\frac{1}{4}{{v}_{ABCD}}\left( 2 \right)\)

Từ (1) và (2) \(\Rightarrow {{V}_{A.MPN}}=\frac{2}{27}.{{V}_{ABCD}}\)

Mặt khác \({{V}_{ABCD}}=\frac{1}{6}AB.AC.AD=\frac{1}{6}.6a.9a.3a=27{{a}^{3}}\Rightarrow {{V}_{A.MPN}}=2{{a}^{3}}.\)

Copyright © 2021 HOCTAP247