Cho lăng trụ ABC.A'B'C' có đáy ABC là tam giác vuông cân tại B và AC=2a. Hình chiếu vuông góc của A' lên mặt phẳng \(\left( ABC \right)\) trùng với trung điểm H của cạnh AB và \(AA...

Câu hỏi :

Cho lăng trụ ABC.A'B'C' có đáy ABC là tam giác vuông cân tại B và AC=2a. Hình chiếu vuông góc của A' lên mặt phẳng \(\left( ABC \right)\) trùng với trung điểm H của cạnh AB và \(AA'=a\sqrt{2}.\) Thể tích khối lăng trụ đã cho bằng.

A. \({{a}^{3}}\sqrt{3}.\)

B. \(2{{a}^{3}}\sqrt{2}.\)

C. \(\frac{{{a}^{3}}\sqrt{6}}{2}.\)

D. \(\frac{{{a}^{3}}\sqrt{6}}{6}.\)

* Đáp án

C

* Hướng dẫn giải

Ta có \(A{{B}^{2}}+B{{C}^{2}}=A{{C}^{2}}\Leftrightarrow 2A{{B}^{2}}=4{{a}^{2}}\Leftrightarrow AB=a\sqrt{2}\Rightarrow {{S}_{\Delta ABC}}={{a}^{2}}.\)

Lại có \(AH=\frac{AB}{2}=\frac{a\sqrt{2}}{2}\Rightarrow A'H=\sqrt{A'{{A}^{2}}-A{{H}^{2}}}=\frac{a\sqrt{6}}{2}.\)

Thể tích khối lăng trụ bằng \({{V}_{ABC.A'B'C'}}={{S}_{\Delta ABC}}.A'H={{a}^{2}}.\frac{a\sqrt{6}}{2}=\frac{{{a}^{3}}\sqrt{6}}{2}.\)

Copyright © 2021 HOCTAP247