A. 2
B. 1
C. 0
D. 3
B
TXÐ: \(D=\mathbb{R}\backslash \left\{ m \right\}.\)
Ta có: \(y'=\frac{-m+{{m}^{2}}+1}{{{\left( x-m \right)}^{2}}}>0\text{ }\forall x\ne m.\)
Để hàm số có GTLN trên [0;4] bằng -6 thì điều kiện cần là hàm số phải xác định trên [0; 4]
\( \Rightarrow m \notin \left[ {0;4} \right] \Rightarrow \left[ \begin{array}{l} m < 0\\ m > 4 \end{array} \right..\)
Khi đó hàm số đã cho đồng biến trên [0;4], do đó \(\underset{\left[ 0;4 \right]}{\mathop{\max }}\,y=y\left( 4 \right)=\frac{3-{{m}^{2}}}{4-m}=-6.\)
\( \Leftrightarrow 3 - {m^2} = - 24 + 6m \Leftrightarrow {m^2} + 6m - 27 = 0 \Leftrightarrow \left[ \begin{array}{l} m = 3{\rm{ }}\left( {KTM} \right)\\ m = - 9{\rm{ }}\left( {TM} \right) \end{array} \right.\)
Vậy có duy nhất 1 giá trị của \(m\) thỏa mãn yêu cầu bài toán là \(m=-9.\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247