Cho lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác đều cạnh a. Mặt phẳng \(\left( AB'C' \right)\) tạo với mặt phẳng \(\left( ABC \right)\)một góc 60o. Thể tích khối lăng trụ \(ABC...

Câu hỏi :

Cho lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác đều cạnh a. Mặt phẳng \(\left( AB'C' \right)\) tạo với mặt phẳng \(\left( ABC \right)\)một góc 60o. Thể tích khối lăng trụ \(ABC.A'B'C'\) bằng

A. \(\frac{{{a}^{3}}\sqrt{3}}{2}\)

B. \(\frac{3{{a}^{3}}\sqrt{3}}{4}\)

C. \(\frac{{{a}^{3}}\sqrt{3}}{8}\).

D. \(\frac{3{{a}^{3}}\sqrt{3}}{8}\)

* Đáp án

D

* Hướng dẫn giải

Gọi \(H,H'\) lần lượt là trung điểm của \(BC,B'C'.\)

Do lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác đều cạnh \(a\) nên \(AH=\frac{a\sqrt{3}}{2}\) và \({{S}_{\Delta A'B'C'}}=\frac{{{a}^{2}}\sqrt{3}}{4}\)

Ta có: \(\left( \left( AB'C' \right),\left( ABC \right) \right)=\left( AH,AH' \right)=\angle H'AH={{60}^{0}}.\)

Xét tam giác \(H'HA\) vuông tại \(H\) có \(\tan {{60}^{0}}=\frac{H'H}{AH}\Leftrightarrow H'H=AH.\tan {{60}^{0}}=\frac{a\sqrt{3}}{2}.\sqrt{3}=\frac{3}{2}a\)

Mà \(A'A=H'H\) nên \(A'A=\frac{3}{2}a.\)

Vậy \({{V}_{ABC.A'B'C'}}=A'A.{{S}_{\Delta A'B'C'}}=\frac{3}{2}a.\frac{{{a}^{2}}\sqrt{3}}{4}=\frac{3\sqrt{3}}{8}{{a}^{3}}.\)

Copyright © 2021 HOCTAP247