Kết quả \(\underset{x\to -1}{\mathop{\lim }}\,\frac{x+1}{2{{x}^{3}}+2}\) bằng:

Câu hỏi :

Kết quả \(\underset{x\to -1}{\mathop{\lim }}\,\frac{x+1}{2{{x}^{3}}+2}\) bằng:

A. \(0\).

B. \(-\frac{1}{2}\).

C. \(\frac{1}{6}\).

D. \(\frac{1}{2}\).

* Đáp án

C

* Hướng dẫn giải

Ta có:

\(\underset{x\to -1}{\mathop{\lim }}\,\frac{x+1}{2{{x}^{3}}+2}=\underset{x\to -1}{\mathop{\lim }}\,\frac{x+1}{2\left( {{x}^{3}}+1 \right)}=\underset{x\to -1}{\mathop{\lim }}\,\frac{x+1}{2\left( x+1 \right)\left( {{x}^{2}}-x+1 \right)}=\underset{x\to -1}{\mathop{\lim }}\,\frac{1}{2\left( {{x}^{2}}-x+1 \right)}=\frac{1}{2.3}=\frac{1}{6}.\)

Copyright © 2021 HOCTAP247