Trang chủ Đề thi & kiểm tra Lớp 12 Toán học Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Ấp Bắc lần 3 Cho hàm số \(y=f(x)\) có đạo hàm \({f}'(x)=(x+1){{(x-2)}^{3}}{{(x-3)}^{4}}{{(x+5)}^{5}}\text{; }\forall x\in...

Cho hàm số \(y=f(x)\) có đạo hàm \({f}'(x)=(x+1){{(x-2)}^{3}}{{(x-3)}^{4}}{{(x+5)}^{5}}\text{; }\forall x\in \mathbb{R}\) . Hỏi hàm số \(y=f(x)\) có mấy điểm cực trị?

Câu hỏi :

Cho hàm số \(y=f(x)\) có đạo hàm \({f}'(x)=(x+1){{(x-2)}^{3}}{{(x-3)}^{4}}{{(x+5)}^{5}}\text{; }\forall x\in \mathbb{R}\) . Hỏi hàm số \(y=f(x)\) có mấy điểm cực trị?

A. 4

B. 3

C. 2

D. 5

* Đáp án

B

* Hướng dẫn giải

Ta thấy \(f'\left( x \right)\) đổi dấu khi đi qua \(x=-1;x=2;x=-5\) nên hàm số có 3 cực trị.

Copyright © 2021 HOCTAP247