Cho lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông cân tại \(B\) và \(AC=2a\) biết rằng \(\left( A'BC \right)\) hợp với đáy \(\left( ABC \right)\) một góc \({{45}^{0...

Câu hỏi :

Cho lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông cân tại \(B\) và \(AC=2a\) biết rằng \(\left( A'BC \right)\) hợp với đáy \(\left( ABC \right)\) một góc \({{45}^{0}}\).Thể tích khối lăng trụ \(ABC.A'B'C'\) bằng

A. \(\frac{{{a}^{3}}\sqrt{2}}{2}\)

B. \(\frac{{{a}^{3}}\sqrt{3}}{3}\)

C. \({{a}^{3}}\sqrt{3}\)

D. \({{a}^{3}}\sqrt{2}\)

* Đáp án

D

* Hướng dẫn giải

Tam giác \(ABC\) là tam giác vuông cân tại \(B.\) Gọi \(BA=BC=b.\)

Áp dụng định lí Pitago vào trong tam giác vuông \(ABC\) ta có \(\sqrt{B{{A}^{2}}+B{{C}^{2}}}=AC\Leftrightarrow b\sqrt{2}=2a\Leftrightarrow b=a\sqrt{2}.\)

Diện tích đáy là \({{S}_{ABC}}=\frac{1}{2}BA.BC=\frac{1}{2}{{b}^{2}}=\frac{1}{2}{{\left( a\sqrt{2} \right)}^{2}}={{a}^{2}}.\)

Ta có \(\left\{ \begin{array}{l} \left( {A'BC} \right) \cap \left( {ABC} \right) = BC\\ BC \bot \left( {AA'B} \right)\\ \left( {AA'B} \right) \cap \left( {ABC} \right) = AB\\ \left( {AA'B} \right) \cap \left( {A'BC} \right) = A'B \end{array} \right..\)

Do đó góc giữa \(\left( A'BC \right)\) và đáy \(\left( ABC \right)\) bằng góc giữa \(AB\) và \(A'B\) và bằng góc \(\widehat{ABA'},\) theo giả thiết, ta có \(\widehat{ABA'}={{45}^{0}}.\)

Tam giác \(AA'B\) vuông cân tại \(A\) nên \(AA'=AB=a\sqrt{2}.\)

Thể tích khối lăng trụ \(ABC.A'B'C'\) bằng \(V=AA'.{{S}_{ABC}}=a\sqrt{2}.{{a}^{2}}={{a}^{3}}\sqrt{2}.\)

Copyright © 2021 HOCTAP247