Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a,\) mặt bên \(SAB\) nằm trong mặt phẳng vuông góc với \(\left( ABCD \right),\text{ }\widehat{SAB}={{60}^{0}},\text{ }SA=2a.\)...

Câu hỏi :

Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a,\) mặt bên \(SAB\) nằm trong mặt phẳng vuông góc với \(\left( ABCD \right),\text{ }\widehat{SAB}={{60}^{0}},\text{ }SA=2a.\) Thể tích \(V\) của khối chóp \(S.ABCD\) là

A. \(V=\frac{\sqrt{3}{{a}^{3}}}{3}.\)

B. \(V=\frac{2\sqrt{3}{{a}^{3}}}{3}.\)

C. \(V={{a}^{3}}\sqrt{3}.\)

D. \(V=\frac{{{a}^{3}}}{3}.\)

* Đáp án

A

* Hướng dẫn giải

Áp dụng Định lí cosin cho tam giác \(SAB,\) ta có \(S{{B}^{2}}=A{{B}^{2}}+S{{A}^{2}}-2AB.SA.\cos {{60}^{0}}=3{{a}^{2}}\)

Tam giác \(SAB\) thỏa mãn \(S{{B}^{2}}+A{{B}^{2}}=S{{A}^{2}}\) nên tam giác \(SAB\) vuông tại \(B.\)

Ta có \(\left\{ \begin{array}{l} \left( {SAB} \right) \bot \left( {ABCD} \right)\\ \left( {SAB} \right) \cap \left( {ABCD} \right) = AB\\ SB \subset \left( {SAB} \right),SB \bot AB \end{array} \right. \Rightarrow SB \bot \left( {ABCD} \right).\)

Vậy \(V={{V}_{S.ABCD}}=\frac{1}{3}SB.{{S}_{ABCD}}=\frac{1}{3}a\sqrt{3}.{{a}^{2}}=\frac{{{a}^{3}}\sqrt{3}}{3}\) (đvtt).

Copyright © 2021 HOCTAP247