A. \(\underset{\left( 0;+\infty \right)}{\mathop{\min }}\,f\left( x \right)=1.\)
B. \(\underset{\left( 0;+\infty \right)}{\mathop{\min }}\,f\left( x \right)=2.\)
C. \(\underset{\left( 0;+\infty \right)}{\mathop{\min }}\,f\left( x \right)=3.\)
D. \(\underset{\left( 0;+\infty \right)}{\mathop{\min }}\,f\left( x \right)=-1.\)
A
Ta có \(f'\left( x \right) = 3{x^2} - 3 = 0 \Rightarrow \left[ \begin{array}{l} x = 1\\ x = - 1 \end{array} \right.\)
BBT
Vậy \(\underset{\left( -\infty ;0 \right)}{\mathop{\max }}\,f\left( x \right)=f\left( -1 \right)\Rightarrow f\left( -1 \right)=5\Leftrightarrow m+2=5\Leftrightarrow m=3.\)
\(\underset{\left( 0;+\infty \right)}{\mathop{\min }}\,f\left( x \right)=f\left( 1 \right)=m-2=3-2=1.\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247