A. 2
B. 4
C. 3
D. 1
A
Tập xác định \(D=\mathbb{R}\backslash \left\{ -1;3 \right\}.\)
\(y=\frac{x+1}{{{x}^{2}}-2x-3}=\frac{x+1}{\left( x+1 \right)\left( x-3 \right)}=\frac{1}{x-3}.\)
Vì \(\underset{x\to +\infty }{\mathop{\lim }}\,y=\underset{x\to +\infty }{\mathop{\lim }}\,\frac{1}{x-3}=0\) và \(\underset{x\to -\infty }{\mathop{\lim }}\,y=\underset{x\to -\infty }{\mathop{\lim }}\,\frac{1}{x-3}=0\) nên đường thẳng \(y=0\) là tiệm cận ngang của đồ thị hàm số.
Vì \(\underset{x\to {{3}^{+}}}{\mathop{\lim }}\,y=\underset{x\to {{3}^{+}}}{\mathop{\lim }}\,\frac{1}{x-3}=+\infty \) và \(\underset{x\to {{3}^{-}}}{\mathop{\lim }}\,y=\underset{x\to {{3}^{-}}}{\mathop{\lim }}\,\frac{1}{x-3}=-\infty \) nên đường thẳng \(x=3\) là tiệm cận đứng của đồ thị hàm số.
Vậy tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là 2.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247