Cho \(f\left( x \right)\) là hàm số bậc 5. Hàm số \(y={f}'\left( x \right)\) có bảng biến thiên như hình vẽ sau ​ Số điểm cực trị của hàm số \(g\left( x \right)=f\left( x-2 \righ...

Câu hỏi :

Cho \(f\left( x \right)\) là hàm số bậc 5. Hàm số \(y={f}'\left( x \right)\) có bảng biến thiên như hình vẽ sau

A. 4

B. 2

C. 3

D. 1

* Đáp án

B

* Hướng dẫn giải

Ta biết f'(x) có dạng bậc bốn trùng phương nên đặt \(f'\left( x \right) = a{x^4} + b{x^2} + c \Rightarrow f''\left( x \right) = 4a{x^3} + 2bx\).

Từ bảng biến thiên suy ra: \(\left\{ \begin{array}{l} f'\left( { \pm 1} \right) = 0\\ f'\left( 0 \right) = 3\\ f''\left( { \pm 1} \right) = 0\\ f''\left( 0 \right) = 0 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} a + b + c = 0\\ c = 3\\ 4a + 2b = 0 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} a = 3\\ b = - 6\\ c = 3 \end{array} \right.\).

Do vậy \(f'\left( x \right) = 3{x^4} - 6{x^2} + 3 = 3{\left( {{x^2} - 1} \right)^2} \Rightarrow f'\left( {x - 2} \right) = 3{\left( {{x^2} - 4x + 3} \right)^2}\).

Xét hàm số g(x), ta có \(g'\left( x \right) = f'\left( {x - 2} \right) + 3\left( {{x^2} - 4x + 3} \right) = 3{\left( {{x^2} - 4x + 3} \right)^2} + 3\left( {{x^2} - 4x + 3} \right)\);

\(g'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l} {x^2} - 4x + 3 = 0\\ {x^2} - 4x + 3 = - 1 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 1\\ x = 3\\ x = 2 \end{array} \right.\).

Bảng biến thiên :

Từ bảng biến thiên suy ra hàm số g(x) có 2 điểm cực trị. 

Copyright © 2021 HOCTAP247