Cho hàm số \(y=f\left( x \right)\) liên tục trên đoạn \(\left[ -2;2 \right]\) và \(2f\left( x \right)+3f\left( -x \right)=\frac{1}{{{x}^{2}}+4}\), \(\forall x\in \left[ -2;2 \right...

Câu hỏi :

Cho hàm số \(y=f\left( x \right)\) liên tục trên đoạn \(\left[ -2;2 \right]\) và \(2f\left( x \right)+3f\left( -x \right)=\frac{1}{{{x}^{2}}+4}\), \(\forall x\in \left[ -2;2 \right]\). Tính \(I=\int\limits_{-2}^{2}{f\left( x \right)}\text{d}x\).

A. \(I = \frac{\pi }{{10}}\)

B. \(I =  - \frac{\pi }{{10}}\)

C. \(I =  - \frac{\pi }{{20}}\)

D. \(I =   \frac{\pi }{{20}}\)

* Đáp án

D

* Hướng dẫn giải

Ta có: \(2f\left( x \right) + 3f\left( { - x} \right) = \frac{1}{{{x^2} + 4}}\), \(\forall x \in \left[ { - 2;2} \right]\), suy ra \({2\int\limits_{ - 2}^2 {f\left( x \right)} {\rm{d}}x + 3\int\limits_{ - 2}^2 {f\left( { - x} \right)} {\rm{d}}x = \int\limits_{ - 2}^2 {\frac{1}{{{x^2} + 4}}} {\rm{d}}x}\) (1).

Xét \(3\int\limits_{ - 2}^2 {f\left( { - x} \right)} {\rm{d}}x\). Đặt \(t =  - x \Rightarrow dt =  - dx\). Ta có: \(3\int\limits_{ - 2}^2 {f\left( { - x} \right)} {\rm{d}}x = 3\int\limits_2^{ - 2} {f\left( t \right)\left( { - {\rm{d}}t} \right)}  = 3\int\limits_{ - 2}^2 {f\left( x \right)dx} \) (2).

Thay (2) vào (1), ta được: \(5\int\limits_{ - 2}^2 {f\left( x \right)} {\rm{d}}x = \int\limits_{ - 2}^2 {\frac{1}{{{x^2} + 4}}} {\rm{d}}x \Rightarrow I = \int\limits_{ - 2}^2 {f\left( x \right)} {\rm{d}}x = \frac{1}{5}\int\limits_{ - 2}^2 {\frac{1}{{{x^2} + 4}}} {\rm{d}}x\).

Đặt \(x = 2\tan t \Rightarrow {\rm{d}}x = 2\left( {1 + {{\tan }^2}t} \right){\rm{d}}t\). Đổi cận: \(\left\{ \begin{array}{l} x = - 2 \Rightarrow t = - \frac{\pi }{4}\\ x = 2 \Rightarrow t = \frac{\pi }{4} \end{array} \right.\).

Khi đó: \(I = \frac{1}{5}.\int\limits_{ - \,\,\frac{\pi }{4}}^{\frac{\pi }{4}} {\frac{1}{{4{{\tan }^2}t + 4}}{\rm{2}}\left( {1 + {{\tan }^2}t} \right){\rm{d}}t} = \frac{1}{{10}}\int\limits_{ - \frac{\pi }{4}}^{\frac{\pi }{4}} {{\rm{d}}t} = \frac{\pi }{{20}}\,\).

Copyright © 2021 HOCTAP247