Đường cong trong hình dưới đây là đt của hàm số nào?

Câu hỏi :

Đường cong trong hình dưới đây là đồ thị của hàm số nào?

A. \(y=-{{x}^{3}}+3{{x}^{2}}+1.\)

B. \(y={{x}^{3}}+3{{x}^{2}}+1.\)

C. \(y=-{{x}^{3}}-3{{x}^{2}}+1.\)

D. \(y={{x}^{3}}-3{{x}^{2}}+1.\)

* Đáp án

D

* Hướng dẫn giải

Ta có \(\underset{x\to +\infty }{\mathop{\lim }}\,y=+\infty \) nên \(a>0\) do đó loại đáp án A và C.

Đồ thị hàm số \(y=f\left( x \right)\) đã cho có một điểm cực đại nằm trên trục tung và một điểm cực tiểu nằm bên phải trục tung. Do đó phương trình \(y'=0\) có một nghiệm \({{x}_{1}}=0\) và một nghiệm \({{x}_{2}}>0.\)

Xét đáp án B: \(y' = 0 \Leftrightarrow 3{x^2} + 6x = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = - 2 \end{array} \right..\) (loại).

Xét đáp án D: \(y' = 0 \Leftrightarrow 3{x^2} - 6x = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = 2 \end{array} \right.\) (thỏa mãn).

Copyright © 2021 HOCTAP247