Anh Minh muốn xây dựng một hố ga không có nắp đậy dạng hình hộp chữ nhật có thể tích chứa được \(3200c{{m}^{3}}\), tỉ số giữa chiều cao và chiều rộng của hố ga bằng 2 . Xác định di...

Câu hỏi :

Anh Minh muốn xây dựng một hố ga không có nắp đậy dạng hình hộp chữ nhật có thể tích chứa được \(3200c{{m}^{3}}\), tỉ số giữa chiều cao và chiều rộng của hố ga bằng 2 . Xác định diện tích đáy của hố ga để khi  xây hố tiết kiệm được nguyên vật liệu nhất.

A. \(170c{{m}^{2}}\).

B. \(160c{{m}^{2}}\).

C. \(150c{{m}^{2}}\).

D. \(140c{{m}^{2}}\).

* Đáp án

B

* Hướng dẫn giải

Gọi chiều rộng của hố ga là \(x\left( cm \right)\left( x>0 \right)\Rightarrow \) chiều cao của hố ga là \(2x\left( cm \right)\)

Hố ga dạng hình hộp chữ nhật có thể tích là \(3200c{{m}^{3}}\Rightarrow \) Chiều dài hố ga là \(\frac{3200}{x.2x}=\frac{1600}{{{x}^{2}}}\left( cm \right)\)

Tổng diện tích cần xây hố ga (5 mặt, trừ mặt đáy trên) là:

\(S=2.\left( x+\frac{1600}{{{x}^{2}}} \right).2x+x.\frac{1600}{{{x}^{2}}}=4{{x}^{2}}+\frac{8000}{x}\left( c{{m}^{2}} \right)\)

Theo bất đẳng thức AM-GM, ta có: \(S=4{{x}^{2}}+\frac{4000}{x}+\frac{4000}{x}\ge 3\sqrt[3]{4{{x}^{2}}.\frac{4000}{x}.\frac{400}{x}}=1200\)

Dấu “=” xảy ra khi và chỉ khi \(4{{x}^{2}}=\frac{4000}{x}\Leftrightarrow {{x}^{3}}=1000\Leftrightarrow x=10\) (thỏa mãn)

Với \(x=10\) thì diện tích mặt đáy của hố ga là \(10.\frac{1600}{{{10}^{2}}}=160\left( c{{m}^{2}} \right).\)

Copyright © 2021 HOCTAP247