Cho tứ diện \(ABCD\) có \(AB,AC,AD\) đôi một vuông góc với nhau. Biết \(AB=3a;AC=2a\) và \(AD=a. \) Tính thể tích của khối tứ diện đã cho?

Câu hỏi :

Cho tứ diện \(ABCD\) có \(AB,AC,AD\) đôi một vuông góc với nhau. Biết \(AB=3a;AC=2a\) và \(AD=a. \) Tính thể tích của khối tứ diện đã cho? 

A. \({{a}^{3}}\sqrt{14}.\)

B. \({{a}^{3}}.\)

C. \(3{{a}^{3}}.\)

D. \({{a}^{3}}\sqrt{13}.\)

* Đáp án

B

* Hướng dẫn giải

Do khối tứ diện \(ABCD\) có \(AB,AC,AD\) đôi một vuông góc với nhau nên thể tích của khối tứ diện \(ABCD\) là: \(V=\frac{1}{6}AB.AC.AD=\frac{1}{6}3a.2a.a={{a}^{3}}\)

Copyright © 2021 HOCTAP247