A. \(R=a\)
B. \(R=a\sqrt{3}.\)
C. \(R=a\sqrt{5}.\)
D. \(R=3a \)
B
Gọi \(M\) là trung điểm của \(SA\)
Gọi \(O\) là trung điểm của \(BC,\) suy ra \(O\) là tâm đường tròn ngoại tiếp tam giác \(ABC. \) Kẻ trục \(\Delta \) của đường tròn ngoại tiếp \(\Delta ABC. \) Khi đó \(\Delta //SA. \)
Trên mặt phẳng \(\left( SAO \right)\) kẻ đường trung trực của \(SA\) cắt \(\Delta \) tại \(I\) là tâm mặt cầu ngoại tiếp hình chóp \(S.ABC. \)
Bán kính \(R=IC=\sqrt{O{{I}^{2}}+O{{C}^{2}}}=\sqrt{A{{M}^{2}}+O{{C}^{2}}}=\sqrt{\frac{A{{S}^{2}}}{4}+\frac{B{{C}^{2}}}{4}}=\sqrt{\frac{4{{a}^{2}}}{4}+\frac{8{{a}^{2}}}{4}}=a\sqrt{3}.\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247