Cho hình lăng trụ có hai đáy là đường tròn tâm \(O\) và \(O',\) bán kính đáy bằng chiều cao bằng \(4A. \) Trên đường tròn đáy có tâm \(O\) lấy điểm \(A,D;\) trên đường tròn \(O'\)l...

Câu hỏi :

Cho hình lăng trụ có hai đáy là đường tròn tâm \(O\) và \(O',\) bán kính đáy bằng chiều cao bằng \(4a. \) Trên đường tròn đáy có tâm \(O\) lấy điểm \(A,D;\) trên đường tròn \(O'\)lấy điểm \(B,C\) sao cho \(AB\) song song với \(CD\) và \(AB\) không cắt \(OO'.\) Tính độ dài \(AD\) để thể tích khối chóp \(O'.ABCD\) đạt giá trị lớn nhất?

A. \(AD=4a\sqrt{2}.\)

B. \(AD=8a. \)

C. \(AD=2a. \)

D. \(AD=2a\sqrt{3}.\)

* Đáp án

A

* Hướng dẫn giải

Từ \(B,C\) kẻ các đường thẳng song song với đường sinh của hình trụ cắt đường tròn tâm \(O\) lần lượt tại \(B',C'.\)

Vì \(AD\) và \(BC\) là giao tuyến của mặt phẳng \(\left( AB;CD \right)\) với hai mặt phẳng song song nên \(AD//BC. \)

Suy ra: \(AD//B'C'\) hay \(AB'C'D\) là hình bình hành nộp tiếp nên nó là hình chữ nhật.

\(\left\{ \begin{array}{l} B'C' \bot DC'\\ B'C' \bot CC' \end{array} \right. \Rightarrow B'C' \bot CD\) mà \(BC//B'C'\) suy ra \(BC\bot CD. \)

Vậy tứ giác \(ABCD\) là hình chữ nhật.

Đặt \(BC=AD=2x,\) gọi \(I,I'\) lần lượt là trung điểm của \(AD\) và \(BC. \)

Ta có: \(\left\{ \begin{array}{l} OI' \bot BC\\ OO' \bot BC \end{array} \right. \Rightarrow BC \bot \left( {OO'I'} \right) \Rightarrow \left( {OO'I'} \right) \bot \left( {ABCD} \right)\) và có giao tuyến \(I'I.\)

Từ \(O'\) kẻ đường vuông góc với \(I'I\) tại \(H,\) suy ra \(O'H\) là đường cao của hình chóp \(O'.ABCD\).

Gọi \(J\) là giao điểm của \(OO'\) và \(I'I,J\) là trung điểm của \(OO'.\)

Ta có: \(OI=O'I'=\sqrt{O'{{C}^{2}}-I'{{C}^{2}}}=\sqrt{16{{a}^{2}}-{{x}^{2}}}.\)

\(DC'=2.OI=2\sqrt{16{{a}^{2}}-{{x}^{2}}}\Rightarrow DC=\sqrt{DC{{'}^{2}}+CC{{'}^{2}}}=\sqrt{4\left( 16{{a}^{2}}-{{x}^{2}} \right)+16{{a}^{2}}}=2\sqrt{20{{a}^{2}}-{{x}^{2}}}\)

\(\frac{1}{O'{{H}^{2}}}=\frac{1}{O'{{J}^{2}}}+\frac{1}{O'I{{'}^{2}}}=\frac{O'{{J}^{2}}+O'I{{'}^{2}}}{O'{{J}^{2}}.O'I{{'}^{2}}}\Rightarrow O'H=\frac{O'J.O'I'}{\sqrt{O'{{J}^{2}}+O'I{{'}^{2}}}}=\frac{2A. \sqrt{16{{a}^{2}}-{{x}^{2}}}}{\sqrt{20{{a}^{2}}-{{x}^{2}}}}\)

Suy ra: \({{V}_{O'.ABCD}}=\frac{1}{3}.O'H.AD.DC=\frac{1}{3}.\frac{2a\sqrt{16{{a}^{2}}-{{x}^{2}}}}{\sqrt{20{{a}^{2}}-{{x}^{2}}}}.2x.2\sqrt{20{{a}^{2}}-{{x}^{2}}}=\frac{8}{3}.x\sqrt{16{{a}^{2}}-{{x}^{2}}}\)

\(=\frac{8a}{3}\sqrt{{{x}^{2}}\left( 16{{a}^{2}}-{{x}^{2}} \right)}\le \frac{8a}{3}.\frac{{{x}^{2}}+16{{a}^{2}}-{{x}^{2}}}{2}=\frac{64{{a}^{3}}}{3}.\)

Vậy \(\max {{V}_{O'.ABCD}}=\frac{64{{a}^{3}}}{3}\Leftrightarrow {{x}^{2}}=16{{a}^{2}}-{{x}^{2}}\Leftrightarrow x=2\sqrt{2}a\Rightarrow AD=4\sqrt{2}a. \)

Copyright © 2021 HOCTAP247