Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi tâm \(O\) cạnh \(a. \) Biết \(SA=SB=SC=a. \) Đặt \(SD=x\left( 0...

Câu hỏi :

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi tâm \(O\) cạnh \(a. \) Biết \(SA=SB=SC=a. \) Đặt \(SD=x\left( 0<x<a\sqrt{3} \right).\) Tính \(x\) theo \(a\) sao cho \(AC.SD\) đạt giá trị lớn nhất.

A. \(\frac{a\sqrt{6}}{12}.\)

B. \(\frac{a\sqrt{3}}{2}.\)

C. \(\frac{a\sqrt{6}}{2}.\)

D. \(a\sqrt{3}.\)

* Đáp án

C

* Hướng dẫn giải

Ta có \(\Delta SAC=\Delta ABC\left( c-c-c \right)\) và \(\Delta SAC,\Delta ABC\) lần lượt cân tại \(S\) và \(B. \)

Khi đó \(SO=BO=\frac{BD}{2}.\) Suy ra \(\Delta SBD\) vuông tại \(S\) (đường trung tuyến bằng \(\frac{1}{2}\) cạnh đối diện).

Trong \(\Delta SBD\) ta có: \(BD=\sqrt{S{{B}^{2}}+S{{D}^{2}}}=\sqrt{{{a}^{2}}+{{x}^{2}}}.\)

Trong \(\Delta ABD\) áp dụng công thức đường trung tuyến ta có:

\(AO=\sqrt{\frac{2\left( A{{B}^{2}}+A{{D}^{2}} \right)}{4}-\frac{B{{D}^{2}}}{4}}=\sqrt{\frac{2\left( {{a}^{2}}+{{a}^{2}} \right)-\left( {{a}^{2}}+{{x}^{2}} \right)}{4}}=\frac{\sqrt{3{{a}^{2}}-{{x}^{2}}}}{2}.\)

Suy ra \(AC=2AO=\sqrt{3{{a}^{2}}-{{x}^{2}}}.\)

Khi đó \(AC.SD=\sqrt{3{{a}^{2}}-{{x}^{2}}}.x=\sqrt{\left( 3{{a}^{2}}-{{x}^{2}} \right){{x}^{2}}}.\)

Áp dụng bất đẳng thức Cauchy (AM-GM) ta có: \(AC.SD=\sqrt{\left( 3{{a}^{2}}-{{x}^{2}} \right){{x}^{2}}}\le \frac{3{{a}^{2}}-{{x}^{2}}+{{x}^{2}}}{2}=\frac{3{{a}^{2}}}{2}\)

Vậy \(\max AC.SD=\frac{3{{a}^{2}}}{2}.\)

Dấu “=” xảy ra \(3{{a}^{2}}-{{x}^{2}}={{x}^{2}}\Leftrightarrow {{x}^{2}}=\frac{3{{a}^{2}}}{2}\Rightarrow x=\frac{a\sqrt{6}}{2}.\)

Copyright © 2021 HOCTAP247