Cho hàm số \(y=f\left( x \right)\) có đồ thị như hình vẽ: ​ Gọi \(S\) là tập các giá trị nguyên của tham số \(m\) để phương trình \(f\left( 4\left| \sin x \right|+m \right)-3=0\)...

Câu hỏi :

Cho hàm số \(y=f\left( x \right)\) có đồ thị như hình vẽ:

A. \(-3.\)

B. 1

C. 3

D. \(-1.\)

* Đáp án

A

* Hướng dẫn giải

Phương trình đã cho tương đương với: \(f\left( 4\left| \sin x \right|+m \right)=3\left( * \right)\)

Từ đồ thị hàm số suy ra \(\left( * \right) \Leftrightarrow \left[ \begin{array}{l} 4\left| {\sin x} \right| + m = - 1\\ 4\left| {\sin x} \right| + m = 2 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} \left| {\sin x} \right| = - \frac{{m + 1}}{4}\left( 1 \right)\\ \left| {\sin x} \right| = \frac{{2 - m}}{4}\left( 2 \right) \end{array} \right.\)

Điều kiện để phương trình (1) có nghiệm là: \(\left\{ \begin{array}{l} - \frac{{m + 1}}{4} \ge 0\\ - \frac{{m + 1}}{4} \le 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} m + 1 \le 0\\ m + 1 \ge - 4 \end{array} \right. \Leftrightarrow - 5 \le m \le - 1.\)

Điều kiện để phương trình (2) có nghiệm là: \(\left\{ \begin{array}{l} \frac{{2 - m}}{4} \ge 0\\ \frac{{2 - m}}{4} \le 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} 2 - m \ge 0\\ 2 - m \le 4 \end{array} \right. \Leftrightarrow - 2 \le m \le 2.\)

Xét phương trình \(\left| \sin x \right|=\alpha \)

Nếu \(\alpha =0\) thì \(\sin x=0\Leftrightarrow x=k\pi .\) Phương trình có 4 nghiệm thuộc khoảng \(\left( 0;4\pi  \right].\)

Nếu \(\alpha =1\) thì \(\sin x=\pm 1\Leftrightarrow x=\frac{\pi }{2}+k\pi .\) Phương trình có 4 nghiệm thuộc khoảng \(\left( 0;4\pi  \right].\)

Nếu \(0<\alpha <1\) thì \(\sin x=\pm \alpha .\) Phương trình có 8 nghiệm thuộc khoảng \(\left( 0;4\pi  \right].\)

Vậy nếu \(m<-2\) thì phương trình \(\left( 2 \right)\) vô nghiệm, phương trình \(\left( 1 \right)\) chỉ có tối đa 8 nghiệm.

Nếu \(m>-1\) thì phương trình \(\left( 1 \right)\) vô nghiệm, phương trình \(\left( 2 \right)\) chỉ có tối đa 8 nghiệm.

Vì \(m\) nguyên nên:

+) \(m=-2\) Phương trình \(\left( 1 \right)\) có 8 nghiệm, phương trình \(\left( 2 \right)\) có 4 nghiệm (thỏa mãn).

+) \(m=-1\) Phương trình \(\left( 2 \right)\) có 8 nghiệm, phương trình \(\left( 1 \right)\) có 4 nghiệm (thỏa mãn).

Vậy \(S=\left\{ -2;-1 \right\}.\)

Copyright © 2021 HOCTAP247