Trong không gian \(Oxyz\) cho điểm \(M\left( 1;-1;2 \right)\) và hai đường thẳng \({{d}_{1}}:\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-5}{1}\); \({{d}_{2}}:\frac{x-1}{3}=\frac{y+2}{2}=\f...

Câu hỏi :

Trong không gian \(Oxyz\) cho điểm \(M\left( 1;-1;2 \right)\) và hai đường thẳng \({{d}_{1}}:\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-5}{1}\); \({{d}_{2}}:\frac{x-1}{3}=\frac{y+2}{2}=\frac{z+1}{2}\). Đường thẳng \(d\) đi qua \(M\) đồng thời vuông góc với cả \({{d}_{1}}\) và \({{d}_{2}}\) có phương trình là

A. \(\frac{x-1}{1}=\frac{y+1}{3}=\frac{z-5}{1}\).

B. \(\frac{x+1}{4}=\frac{y-1}{-1}=\frac{z+2}{-5}\).

C. \(\frac{x-1}{4}=\frac{y+1}{-1}=\frac{z-2}{-5}\).

D. \(\frac{x+1}{-4}=\frac{y+1}{1}=\frac{z+2}{5}\).

* Đáp án

C

* Hướng dẫn giải

Đường thẳng \({{d}_{1}}\) có một véctơ chỉ phương là là \(\overrightarrow{{{u}_{1}}}=\left( 2;3;1 \right)\).

Đường thẳng \({{d}_{2}}\) có một véctơ chỉ phương là \(\overrightarrow{{{u}_{2}}}=\left( 3;2;2 \right)\).

Do \(\left\{ \begin{array}{l} d \bot {d_1}\\ d \bot {d_2} \end{array} \right. \Rightarrow \) d có một véctơ chỉ phương là: \(\overrightarrow{u}=\left[ \overrightarrow{{{u}_{1}}},\overrightarrow{{{u}_{2}}} \right]=\left( 4;-1;-5 \right)\).

Mặt khác, \(d\) đi qua điểm \(M\left( 1;-1;2 \right)\).

Vậy phương trình đường thẳng \(d\) là: \(\frac{x-1}{4}=\frac{y+1}{-1}=\frac{z-2}{-5}\).

Copyright © 2021 HOCTAP247