Có bao nhiêu số nguyên dương \(y\)sao cho ứng với mỗi \(y\)có không quá 8 số nguyên \(x\) thỏa mãn \(\left( {{5.3}^{x}}-4 \right)\left( {{3}^{x}}-y \right)...

Câu hỏi :

Có bao nhiêu số nguyên dương \(y\)sao cho ứng với mỗi \(y\) có không quá 8 số nguyên \(x\) thỏa mãn \(\left( {{5.3}^{x}}-4 \right)\left( {{3}^{x}}-y \right)<0?\)

A. 2187

B. 6561

C. 2186

D. 19683

* Đáp án

B

* Hướng dẫn giải

Đặt: \(t={{3}^{x}},t>0\)

Ta có BPT: \((5t-4)(t-y)<0\Leftrightarrow \frac{4}{5}<t<y\Leftrightarrow {{\log }_{3}}\frac{4}{5}<x<{{\log }_{3}}y\) (do \(y\ge 1\))

Nếu \({{\log }_{3}}y>8\) thì \(x\in \left\{ 0;1;2......;8 \right\}\) đều là nghiệm nên không thỏa mãn.

Vậy \({{\log }_{3}}y\le 8\Leftrightarrow y\le {{3}^{8}}=6561\Rightarrow y\in \left\{ 1;2;3;.......;6561 \right\}\)

Copyright © 2021 HOCTAP247