A. \(3591\left( c{{m}^{3}} \right)\).
B. \(3592\left( c{{m}^{3}} \right)\).
C. \(3592\left( c{{m}^{3}} \right)\).
D. \(3590\left( c{{m}^{3}} \right)\).
B
Gọi \(M,N\) lần lượt là trung điểm của \(AB\) và \(FE\). Thể tích của hộp nữ trang là hai lần thể tích của của lăng trụ đứng tam giác \(MBC.NFG\) và một phần thể tích của hình trụ có tâm hai đáy là M và N và bán kính hình trụ là \(MC\).
\({{V}_{MBC.NFG~}}={{S}_{\Delta MBC}}.BF=\frac{1}{2}.8.\frac{16\sqrt{3}}{3}.22=\frac{1408\sqrt{3}}{3}\left( c{{m}^{3}} \right)\), \(MC=\frac{16\sqrt{3}}{3}cm.\)
Thể tích của hình trụ có chiều cao \(h=22cm,\) và bán kính đáy \(r=\frac{16\sqrt{3}}{3}cm\) là \({{V}_{tru}}=\pi .{{r}^{2}}.h=\pi .\frac{256}{3}.22=\frac{5632\pi }{3}\left( c{{m}^{3}} \right)\)
Xét \(\Delta MCD\) ta có \(\text{cos}\widehat{CMD}=\frac{M{{D}^{2}}\text{+M}{{\text{C}}^{2}}\text{-}C{{D}^{2}}}{\text{2MC}\text{.MD}}\text{.}\Leftrightarrow \text{cos}\widehat{CMD}=\frac{\frac{256}{3}+\frac{256}{3}-256}{2.\frac{256}{3}}=-\frac{1}{2}\Rightarrow \widehat{CMD}={{120}^{0}}.\)
Thể tích của hộp nữ trang là: \(V=2.\frac{1408\sqrt{3}}{3}+\frac{1}{3}.\frac{5632\pi }{3}\approx 3591,75\left( c{{m}^{3}} \right)\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247