Cho hình chóp S.ABC có đáy là tam giác ABC đều, đường cao SH

Câu hỏi :

Cho hình chóp S.ABC có đáy là tam giác ABC đều, đường cao SH với H nằm trong tam giác ABC và 2SH=BC, (SBC) tạo với mặt phẳng (ABC) một góc 60°. Biết có một điểm O nằm trên đường cao SH sao cho dO;AB=dO;AC=dO;SBC=1. Tính thể tích khối cầu ngoại tiếp hình chóp đã cho.

A. 500π81

B. 343π48

C. 256π81

D. 125π162

* Đáp án

* Hướng dẫn giải

Gọi I là trung điểm của BC. Kẻ:

Ta có:

Theo đề bài, ta có: 

Dễ dàng chứng minh được: 

là phân giác góc A.

Do I là trung điểm của BC, tam giác ABC đều.

=> AI là phân giác góc A.

Suy ra A, H, I thẳng hàng,  (do H nằm trong tam giác ABC)

Ta có:

Tam giác SHI vuông tại H

Tam giác AIC vuông tại I

=>AI=3HI=> H là trọng tâm tam giác đều ABC => M, N lần lượt là trung điểm của AC, AB.

=> S.ABC là hình chóp đều. Mà 

Tam giác IOK vuông tại K:

Tam giác HIO vuông tại H:

Tam giác SHI vuông tại H:

Tam giác SCI vuông tại I:

Bán kính mặt cầu ngoại tiếp khối chóp S.ABC là:

Thể tích mặt cầu ngoại tiếp khối chóp S.ABC là:

Đáp án cần chọn là: B

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Trắc nghiệm Ôn tập chương II Hình học 12 có đáp án !!

Số câu hỏi: 35

Copyright © 2021 HOCTAP247