Cho hình chóp S. ABC có đáy là tam giác ABC đều cạnh a, tam giác SBA vuông tại B

Câu hỏi :

Cho hình chóp S. ABC có đáy là tam giác ABC đều cạnh a, tam giác SBA vuông tại B, tam giác SAC vuông tại C. Biết góc giữa hai mặt phẳng (SAB) và (ABC) bằng 60o. Tính thể tích khối chóp S.ABC theo a.

A.3a38

B.3a312

C.3a36

D. 3a34

* Đáp án

B

* Hướng dẫn giải

Chọn B

Gọi D là hình chiếu của S lên mặt phẳng (ABC), suy ra SDABC.

Ta có SDAB và SBAB(gt), suy ra ABSBDBABD.

 

Tương tự có ACDC hay tam giác ACD vuông ở C.

Dễ thấy SBA=SCA (cạnh huyền và cạnh góc vuông), suy ra SB=SC. Từ đó ta chứng minh được SBD=SCD nên cũng có DB=DC.

 

Vậy DA là đường trung trực của BC, nên cũng là đường phân giác của góc BAC^.

Ta có DAC^=30o, suy ra DC=a3. Ngoài ra góc giữa hai mặt phẳng (SAB) và (ABC) là SBD^=60o suy ra tanSBD^=SDBDSD=BDtanSBD^=a3.3=a
VậyVS.ABC=13.SABC.SD=13a234.a=a3312

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

80 câu trắc nghiệm Khối đa diện nâng cao !!

Số câu hỏi: 78

Copyright © 2021 HOCTAP247