Cho hàm số . Có tất cả bao nhiêu giá trị nguyên của tham số m sao cho

Câu hỏi :

Cho hàm số y=x33mx2+3m21x+2020. Có tất cả bao nhiêu giá trị nguyên của tham số m sao cho hàm số có giá trị nhỏ nhất trên khoảng  0;+

A. 2

B. 1

C. Vô số

D. 3

* Đáp án

* Hướng dẫn giải

Ta có:  y'=3x26mx+3m21

Cho  y'=03x26mx+3m21=0x22mx+m21=0

Ta có: Δ'=m2m2+1=1>0, khi đó phương trình  có 2 nghiệm phân biệt:  x1=m+1x2=m1

Ta có BBT:

Ta có:

fm1=m33m+2022

fm+1=m33m+2018

TH1:  0<m1m>1

Ta có:  f0=2020

Để hàm số có GTNN trên 0;+ thì fm+1f0m33m+20182020

m33m20

Xét hàm số fm=m33m2 ta có  f'm=3m23=0m=±1

BBT:

Dựa vào BBT ta thấy  fm0m2

Kết hợp điều kiện  1<m2

TH2: m10<m+11<m1, khi đó GTNN của hàm số trên 0;+ là  fm+1

Kết hợp 2 trường hợp ta có: 1<m21<m1 mà  mZm0;1;2

Vậy có 3 giá trị của m thỏa mãn yêu cầu bài toán.

Đáp án cần chọn là: D

Copyright © 2021 HOCTAP247