Cho hàm bậc bốn y = f(x). Hàm số y = f'(x) có đồ thị như hình bên

Câu hỏi :

Cho hàm bậc bốn y = f(x). Hàm số y = f'(x) có đồ thị như hình bên. Số điểm cực đại của hàm số fx2+2x+2 là:

A. 1

B. 2

C. 4

D. 3

* Đáp án

A

* Hướng dẫn giải

Đáp án A

Quan sát đồ thị hàm số y=f'(x) ta thấy f'x=0x=1x=1x=3

Đặt gx=fx2+2x+2

g'x=x+1x2+2x+2f'x2+2x+2

g'x=0x+1=0f'x2+2x+2x=1x2+2x+2=1(vn)x2+2x+2=1(1)x2+2x+2=3(2)

1x2+2x+2=1x2+2x+1=0x+12=0x=12x2+2x+2=9x=1±22

Nghiệm của phương trình (1) là nghiệm bội 2 nên không là cực trị của hàm số y=g(x)=fx2+2x+2

Lập BBT của hàm số y = g(x):

Dựa vào BBT ta thấy hàm số y=g(x) đạt cực đại tại x = - 1

Copyright © 2021 HOCTAP247