Cho hàm số y = f(x) liên tục trên R và có đồ thị f'(x) như hình vẽ bên

Câu hỏi :

Cho hàm số y=f(x) liên tục trên R và có đồ thị f'(x) như hình vẽ bên. Số điểm cực đại của hàm số g(x)=fx2+x là:

A. 2

B. 4

C. 5

D. 3

* Đáp án

A

* Hướng dẫn giải

Đáp án A

Ta có:

gx=fx2+xg'x=2x+1f'x2+xg'x=0x=12f'x2+x=0

Dựa vào đồ thị hàm số y=f'(x) ta có f'x=0x=0x=2

f'x2+x=0x2+x=0x2+x=2x=0x=1

Suy ra phương trình g'(x)=0 có 3 nghiệm đơn phân biệt x=12,x=0,x=1

Chọn x = 2 ta có g'2=3f'(2)<0, qua các nghiệm x=12,x=0,x=1 thì g'(x) đổi dấu

BBT:

Dựa vào BBT ta thấy hàm số y=g(x) có hai điểm cực đại x = 0, x = 1

Copyright © 2021 HOCTAP247