Cho hai hàm số bậc bốn y = f(x) và y = g(x) có các đồ thị như hình dưới

Câu hỏi :

Cho hai hàm số bậc bốn y=fx và y=g(x) có các đồ thị như hình dưới đây (2 đồ thị có đúng 3 điểm chung)

A. 5

B. 4

C. 6

D. 3

* Đáp án

A

* Hướng dẫn giải

Đáp án A

Ta có:

hx=fxgx2h'x=2fxgx.fxgx'=2fxgx.f'xg'x

Cho h'x=0fxgx=0(1)f'xg'x=0(2)

Từ đồ thị hàm số ta thấy phương trình (1) có 3 nghiệm phân biệt x=1x=x1x=31;3 và đa thức fxgx đổi dấu khi qua các nghiệm này. Do đó các nghiệm trên là các nghiệm bội lẻ của (1). Mà f (x) và g (x) đều là các đa thức bậc 4 nên bậc của phương trình (1) nhỏ hơn hoặc bằng 4. Từ đó suy ra phương trình (1) là phương trình bậc 3.

Do đó phương trình (1) là phương trình bậc 3 có 3 nghiệm phân biệt nên phương trình (2) có 2 nghiệm phân biệt không trùng với các nghiệm của phương trình (1)

Suy ra phương trình h'(x)=0 có 5 nghiệm phân biệt và  đổi dấu qua các nghiệm này nên hàm số h (x) có 5 điểm cực trị.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Trắc nghiệm Cực trị của hàm số có đáp án !!

Số câu hỏi: 63

Copyright © 2021 HOCTAP247