Tìm tất cả các giá trị của tham số m để đường thẳng đi qua điểm cực đại và cực

Câu hỏi :

Tìm tất cả các giá trị của tham số m để đường thẳng đi qua điểm cực đại và cực tiểu của đồ thị hàm số y=x33mx+2 cắt đường tròn (C) tâm I(1;1), bán kính bằng 1 tại hai điểm phân biệt A, B sao cho diện tích tam giác IAB đạt giá trị lớn nhất?

A. m=2±33

B. m=1±32

C. m=2±32

D. m=2±52

* Đáp án

C

* Hướng dẫn giải

Đáp án C

y'=3x23m

Hàm số có hai điểm cực trị khi m>0 1

Đường thẳng đi qua hai điểm cực trị của đồ thị hàm số y=x33mx+2 có phương trình

y=2mx+22mx+y2=0

Diện tích tam giác IAB là

SΔIAB=12.IA.IB.sinAIB^=12.1.1.sinAIB^=12sinAIB^12

Dấu "=" xảy ra khi AIB^=90° tức là ΔIAB vuông tại I.

Khi đó dI,AB=222mxI+yI22m2+12=22

22m1=2.4m2+1m=2+32m=232 2

Từ (1) và (2) ta được m=2±32

Copyright © 2021 HOCTAP247