A. ∫xlnx+1x+12 dx=−xlnx+1x+1+x22+C
B. ∫xlnx+1x+12 dx=−xlnx+1x+1+lnx+1+1x+1+C
C. ∫xlnx+1x+12 dx=xlnx+1x+1−12ln2x+1−lnx+1−1x+1+C
D. ∫xlnx+1x+12 dx=−xlnx+1x+1+12ln2x+1+lnx+1+1x+1+C
D
Đáp án D
Đặt u=x.lnx+1dv=1x+12dx⇒du=lnx+1+xx+1dxv=−1x+1
Ta được:
∫xlnx+1x+12 dx=−xlnx+1x+1+∫lnx+1x+1+xx+12 dx
=−xlnx+1x+1+∫lnx+1x+1+x+1−1x+12 dx
=−xlnx+1x+1+∫lnx+1x+1+1x+1−1x+12 dx
=−xlnx+1x+1+12ln2x+1+lnx+1+1x+1+C
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247